6 叮咚 1年前 2266次点击
这个教程也是GPT帮我写出来的,看起来还是挺详细的,就是我都看不懂,只有最前面的文字说明能看懂
我把那个打包成了一个文本给他发上来,要不然那个东西非常长,应该发布到社区上来
他这个好像用不了,用那个解析,好像出现了编码错误导致乱码,我还是直接复制上来吧,应该能装得下,他这个最大字数好像是5000字,那个是4100字
本流程:
1. 在语音助手中收到用户的语音指令。
2. 将语音指令传递给讯飞语音引擎,进行语音识别。
3. 获取用户的文本指令后,将其输入到GPT模型中进行处理。
4. 获取模型的输出结果,进行文本合成,调用微软TTS引擎,将结果合成为语音结果。
5. 通过语音助手播放语音输出结果。
步骤:
1. 安装相应的Python第三方库,如Microsoft OneNote SDK、讯飞语音引擎SDK等。
2. 完成微软TTS和讯飞语音引擎的配置和授权。
3. 编写程序,建立语音助手和GPT-3模型之间的桥梁。通过获取用户的语音指令,将其转换为文本指令,并将其输入到GPT-3模型中进行处理。同时,将输出的文本结果转换为语音结果,通过语音助手播放出来。
下面是一份py代码参考:
```python
import azure.cognitiveservices.speech as speechsdk
import requests
import pyaudio
import wave
import time
from aip import AipSpeech
import openai
# 使用OpenAI的GPT-3 API
openai.api_key = "YOUR_API_KEY"
# 讯飞语音识别API的参数
APP_ID = 'YOUR_APP_ID'
API_KEY = 'YOUR_API_KEY'
SECRET_KEY = 'YOUR_SECRET_KEY'
# Microsoft Azure TTS API的参数
AZURE_TTS_KEY = 'YOUR_TTS_KEY'
AZURE_TTS_REGION = 'YOUR_TTS_REGION'
# 讯飞语音识别API的函数
def recognize_voice(wav_file):
client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
with open(wav_file, 'rb') as fp:
result = client.asr(fp.read(), 'wav', 16000, {
'dev_pid': 1536,
})
if result['err_no'] == 0:
return result['result'][0]
else:
return ""
# 微软Azure TTS API的函数,返回语音结果的二进制数据
def text_to_speech(text, language_code='en-US', voice_name='Microsoft Server Speech Text to Speech Voice (en-US, Guy24KRUS)'):
speech_config = speechsdk.SpeechConfig(subscription=AZURE_TTS_KEY, region=AZURE_TTS_REGION, speech_synthesis_language=language_code)
audio_output_config = speechsdk.AudioOutputConfig(use_default_speaker=True)
# 选择语音类型
voice = speechsdk.VoiceSelectionParams(voice_id=voice_name)
# 生成语音
synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=audio_output_config)
result = synthesizer.speak_text_async(text).get()
if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
return result.audio_data
else:
return ""
# 录音函数,返回.wav文件路径
def record_audio():
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 16000
RECORD_SECONDS = 5
WAVE_OUTPUT_FILENAME = "input.wav"
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK)
print("Recording...")
frames = []
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
data = stream.read(CHUNK)
frames.append(data)
print("Done recording.")
stream.stop_stream()
stream.close()
p.terminate()
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))
wf.close()
return WAVE_OUTPUT_FILENAME
# 将文本发送给GPT-3进行处理
def send_to_gpt(text):
response = openai.Completion.create(engine="davinci", prompt=text, max_tokens=1024, n=1,
stop=None, temperature=0.5)
return response.choices[0].text.strip()
# 主函数,完成整个语音助手的流程
def main():
while True:
# 录音并进行语音识别
wav_file = record_audio()
command = recognize_voice(wav_file)
print("User said: " + command)
# 将指令发送给GPT-3进行处理
gpt_result = send_to_gpt(command)
# 将文本结果转换成语音结果并播放
text_to_speech(gpt_result)
time.sleep(1)
if __name__ == '__main__':
main()
```
参考资料:
- [OpenAI GPT-3 API](https://beta.openai.com/docs/api-reference/introduction)
- [讯飞语音识别API](https://www.xfyun.cn/services/voice)
- [Microsoft Azure TTS API](https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/rest-text-to-speech) [Python Speech Recognition Library](https://pypi.org/project/SpeechRecognition/)
- [Python Wave Library](https://docs.python.org/3/library/wave.html)
- [Python PyAudio Library](https://pypi.org/project/PyAudio/)
- [Python Requests Library](https://pypi.org/project/requests/)
- [Python Microsoft OneNote SDK](https://github.com/OneNoteDev/OneNote-SDK-Python)
- [Python Baidu AIP SDK](https://pypi.org/project/baidu-aip/)
- [Python Microsoft Azure SDK](https://pypi.org/project/azure-cognitiveservices-speech/)
需要注意的是,这只是一个简单的参考实现,实际开发需要根据实际情况进行定制化。同时,涉及到多个API的配置和授权,需要在相应平台上进行申请和设置,保证安全和合规。
不错不错哦,感谢楼主的分享